Jobs, Studien-, Bachelor- oder Master-Arbeiten

Die folgende Liste schlägt Themen für studentische Arbeiten an der Arbeitsgruppe vor. Viele Themen können als HiWi-Job, Studien-, Bachelor- oder Master-Arbeit bearbeitet werden. Weitere Arbeiten in den genannten Themengebieten sind stets auf Anfrage möglich. Kontaktieren Sie uns gerne!

Der Leitfaden (wird in neuem Tab geöffnet) enthält Hinweise zum Schreiben von Abschluss- und Hausarbeiten, außerdem stehen Latex-Vorlagen für Arbeiten und Vorträge bereit.

  • Bachelorarbeit, Masterarbeit, Projektseminar, Hiwi Stelle

    Parallel algorithms play an increasingly vital role in both research and industry for accelerating simulations. Domain Decomposition methods (DDMs), such as nonoverlapping Schwarz or Dirichlet-Neumann/Neumann-Neumann methods, are effective approaches for introducing spatial concurrency, thereby facilitating parallel computations. When the problems under examination are not only spatially dependent but also time-dependent, waveform relaxation enhances information exchange between different time steps [2, 3]. This, in turn, enhances additional concurrency in time when combined with Parareal methods.

    The objective of this project is to implement selected algorithms from the provided references and evaluate their performance using discretized benchmark problems.

    Betreuer/innen: Mario Mally, M.Sc., Timon Seibel, M.Sc.

    Ausschreibung als PDF

  • Studienarbeit, Bachelorarbeit, Proseminar, Projektseminar

    Due to the growing importance of e-mobility, the efficient simulation and optimization of electric energy converters, in particular electric machines, is becoming increasingly important. In the manufacturing process of these electric machines imperfections and small deviations from the nominal design can occur. In the worst case, these imperfections can lead to a significant decrease in quality or even failure of the machine. To avoid this, the machine can be optimized robustly, i.e., considering the deviations in the machine design. Robust optimization aims to find a machine design which is robust in terms of deviations from the nominal design, i.e., to find an optimum in terms of a goal function J which does not deteriorate significantly for small changes in the design parameters p, compare Fig. 2. In this project an electric machine is simulated using isogeometric analysis and the shape of the machine shall be optimized robustly considering uncertainties, using uncertainty quantification methods like the Monte Carlo method.

    Betreuer/innen: Anna Ziegler, M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Bachelorarbeit

    The determination of optimal current distributions on given surfaces is often the starting point for the electromagnetic design of coil dominated electromagnets utilized, e.g. in particle accelerators and magnetic resonance imaging (MRI). Geometrical and mechanical constraints as well as the particle beam size determine the coil winding surface, on which an optimal current density is to be determined.

    In this Bachelor thesis, a stream function approach for the determination of optimal current densities on given surfaces shall be developed and implemented in Bembel, the BEM-based engineering library, see www.bembel.eu. The goal is an automated generation of winding paths, on given surfaces and field quality requirements.

    Betreuer/innen: Maximilian Nolte, M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Bachelorarbeit

    The classical way of expressing the field uniformity in accelerator magnets is by means of the Fourier coefficients of the trigonometric eigenfunctions of the Laplace equation also known as multipoles. When the magnets are curved (Fig. 1), higher-order terms appear and the scaling laws derived for straight magnets are no more applicable. The field reconstruction from field simulations or magnetic measurements should therefore be based on the eigenfunctions of the Laplace equation in the toroidal coordinate system, so called toroidal harmonics.

    TU Darmstadt, together with the European Organization for Nuclear Research (CERN) formulated a linear inverse problem to determine the toroidal harmonics from the magnetic flux density.

    In this thesis, different algorithms to solve this inverse problem shall be studied and compared on magnetic flux density measurements.

    Betreuer/innen: Luisa Fleig, M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Bachelorarbeit, Masterarbeit, Projektseminar

    High-temperature superconducting (HTS) materials are a promising technology for high-field magnets in particle accelerators. In particular, no-insulation (NI) coils, i.e., coils wound without turn-to-turn insulation, have gained popularity due to their robustness [1]. Numerical methods such as the finite element (FE) method play a key role in developing HTS-based applications. The objective of this project is to extend CERN’s existing open-source Finite Element Quench Simulation (FiQuS) framework with 2D axisymmetric FE models of NI coils [2]. Since they are more efficient but less general than existing 3D models, they will complement the latter as an important tool in FiQuS to analyze NI coils. Following FiQuS’s ideals, a key aspect will be to hide the complexities CERN of the FE formulation from the users who are typically not FE experts.

    Betreuer/innen: Erik Schnaubelt, M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Bachelorarbeit, Masterarbeit, Projektseminar

    CERN started a project last year to build a comprehensive open-source quench simulation tool called FiQuS (Finite Element Quench Simulation). It is based on the finite element (FE) framework ONELAB and written mostly in Python. The idea is to build a flexible tool which allows users to build and simulate complex models from human-readable inputs hiding the complexity of the FE kernel. In order to simulate real-world accelerator magnet circuits, this project aims at coupling FE magnet models from FiQuS with electric circuits [1], which can then be solved by circuit simulators such as Xyce. A key aspect will be to hide the complexities of this coupling from the users who are typically not FE experts.

    Betreuer/innen: Erik Schnaubelt, M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Masterarbeit

    Solving partial differential equations numerically with boundary element methods requires the application of fast methods to be competitive with other numerical methods. At high-frequencies, the existing implementation of H2-matrices breaks down and needs to be adapted in order to work efficiently.

    The idea of the approach is to approximate a spherical wave in far distance hierarchically by plane waves. The implementation is carried out in the C++ library Bembel, see www.bembel.eu.

    Betreuer/innen: Maximilian Nolte, M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Bachelorarbeit, Masterarbeit, Projektseminar

    Electric energy conversion is a key issue on the way to decarbonization. Computational design and optimization of electric motors is a very active research area with the aim to increase the efficiency and power density of electric drives. Yet, optimization in commercial solvers is often performed using time-consuming methods such as surrogates or genetic algorithms, taking days or weeks for one optimization.

    This work combines the modeling of the motor using Isogeometric Analysis (IGA), which allows to exactly represent the geometry, with fast gradient based optimization. By using present state-of-the-art numerical modeling techniques together with efficient optimization algorithms, it is possible to reduce the optimization time to several minutes.

    Betreuer/innen: Michael Wiesheu, M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Bachelorarbeit

    The need for higher energy efficiency and decarbonization give rise to a steadily increasing importance of electric drives. Simulations allow the physical limits to be pushed in order to increase the power density and make motors more cost-efficient. This work aims to investigate the influence of mechanical stresses in electric motors on the electromagnetic behavior and find out how stress dependent material properties can be mitigated or exploited. Simulations are performed in an Finite Element (FE) framework using Isogeometric Analysis (IGA), which allows to exactly represent the geometry. This enables an efficient coupling of the geometric, magnetic and mechanical systems.

    Betreuer/innen: Michael Wiesheu, M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Studienarbeit, Bachelorarbeit, Masterarbeit, Projektseminar

    Deviations in the manufacturing process of electronic components may lead to rejections due to malfunctioning. Uncertain design parameters (i.e. geometrical and material parameters) can be modeled as random variables. Then, the failure probability of a realization can be estimated. A standard approach for estimating failure probabilities is a Monte Carlo analysis. In a Monte Carlo analysis a large number of sample points is generated according to a given probability distribution. The percentage of sample points not fulfilling some predefined performance feature specifications denotes the failure probability. In order to obtain a reliable estimation, a large number of sample points is required. This leads to high computing costs, since for each sample point a PDE must be solved, e.g. with the finite element method (FEM). Current research deals with the reduction of computational effort. Importance sampling is an approach to reduce the number of FEM evaluations by generating sample points in critical regions with a higher probability.

    Betreuer/innen: Dr.-Ing. Mona Fuhrländer, Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Bachelorarbeit, Masterarbeit

    Due to the growing importance of e-mobility, the efficient simulation and optimization of electric energy converters, in particular electric machines, is becoming increasingly important. In the manufacturing process of these electric machines imperfections and small deviations from the nominal design can occur. In the worst case, these imperfections can lead to a significant decrease in quality or even failure of the machine. To avoid this, the machine can be optimized robustly, i.e., considering the deviations in the machine design. Robust optimization aims to find a machine design which is robust in terms of deviations from the nominal design, i.e., to find an optimum in terms of a goal function J which does not deteriorate significantly for small changes in the design parameters p, compare Fig. 2. In this project an electric machine is simulated using isogeometric analysis and the shape of the machine shall be optimized robustly considering uncertainties, using uncertainty quantification methods like the Monte Carlo method.

    Betreuer/innen: Dr.-Ing. Melina Merkel, Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

2024 Modellerstellung und Simulationsstudie zur Impedanzmessung bei Knochenheilungsverläufen (zusammen mit KIS*MED)
2024 Tree-Cotree Eichung zur Wiederherstellung der verallgemeinerten Coulomb-Eichung
2024 Asynchrone iterative Algorithmen für die Simulation von elektrischen Maschinen
2024 Digitalisierung von Halbleiterdatenblättern mit Hilfe von maschinellem Lernen zur Erstellung von physikalisch informierten parametrischen Modellen (extern bei PE Systems)
2024 Vergleich verschiedener Motormodelle für die Steuerung einer Induktionsmaschine
2023 Untersuchung von Matrixeigenschaften zur Bestimmung von Toroidalharmonischen
2023 Vorkonditionierung von parallelisierbaren Domänenzerlegungsansätzen
2023 Mortar-Methoden für dünne Schalenapproximationen
2023 Lösung von Wirbelstromphänomenen in feld-netzwerk-gekoppelten Problemen mit Parareal
2023 Magneto-mechanische Kopplung eines Elektromotors mit isogeometrischen finiten Elementen
2023 Mappings for Shape Morphing Applied to an Eigenvalue Tracking Method
2023 Optimale Versuchsplanung für LEDs mittels Gaußprozessregression
2023 Combining Domain Decomposition and Parallel-in-Time Methods for Heat Equation
2023 Index-aware physics informed neural networks
2022 Self Service Advanced Analytics for Modular Plants
2022 Niederfrequenzstabilisierung für elektroquasistatische Probleme
2022 Reduzierte Basen für die Verfolgung von Eigenwerten
2022 Baum-Cobaum-Eichung für zweistufige vollständige Maxwell-Probleme
2022 Parallele Lösung von linearen Systemen, die in Gebietszerlegungsverfahren auftreten
2022 Flexiblere Zahlenformate für hochpräzise Simulationen
2022 Numerische Analyse SQP-artiger Verfahren
2022 Formoptimierung eines magnetokalorischen Kühlsystems mit isogeometrischen finiten Elementen
2022 Self Service Advanced Analytics for Modular Plants (extern bei Merck)
2022 A Python Circuit Simulator based on Xyce
2022 Self Service Advanced Analytics for Modular Plants
2022 An All-floating IETI Method from a Mortaring Perspective
2021 Mortaring for the Isogeometric Boundary Element Method
2021 Entwicklung und Validierung eines gemeinsamen multiphysikatischen Simulationsmodells einer C-Gestell-Presse zur Prozessanalyse und dessen Nutzen Für die virtuelle Inbetriebnahme (extern bei Siemens)
2021 Numerische Methoden zur Lösung der quasistatischen Darwin-Formulierung
2021 Minimierung von Fehlerwahrscheinlichkeiten für elektrische Maschinen
2021 Volumetrische Modellierung und Simulation von elektrischen Maschinen für additive Fertigung
2021 Numerische Modellierung und Simulation von magnetisch-mechanischer Kopplung mit isogeometrischer Analyse
2020 Surrogatbasierte Optimierung mit Unsicherheiten
2020 Numersche Simulation von magnetothermischen Phänomenen in hochtemperatur-supraleitenden Bändern und Spulen
2020 Volumetrische Modellierung und Simulation von elektrischen Maschinen für additive Fertigung
2020 ParaROCK – A parallel Runge-Kutta Orthogonal Chebyshev method
2020 Parallel-In-Zeit-Simulationvon elektromagnetischen Energiewandlern
2020 Implementierung von 3D isogeometrischem Mortaring
2020 Pareto Optimization for Failure Probabilities
2020 Automated Numerical Characterization of a Synchronous Reluctance Machine (extern bei Dassault Systems)
2020 Modeling and Optimization of DC-link Capacitors in Automotive High-voltage Systems (extern bei Porsche)
2019 Iterative Solvers for Complex Linear Systems in the Isogeometric Boundary Element Method
2019 Shape Optimizing a Permanent Magnet Synchronous Machine using Isogeometric Analysis
2019 Efficient Methods for Yield Optimization using CST Microwave Studio
2019 Online Simulation of Magnets for Augmented Reality Applications
2019 Modelling of Superconducting Accelerator Magnets with Finite Elements
2019 Bayesian Methods for Magnetic Field Reconstruction from Measurements
2018 Neue effiziente numerische Verfahren zur Simulation von elektrischen Maschinen (extern bei der Robert Bosch GmbH)
2018 Shape Optimization of an Electron Gun using Isogeometric Analysis
2018 Particle Tracking Using Isogeometric Analysis
2018 Optimization of a Permanent Magnet Synchronous Machine with an Uncertain Driving Cycle
2018 Numerical Simulation of an Optical Grating Coupler with Uncertainties using Adaptive Sparse-Grids based on Adjoint-Error Indicators
2017 Simulation Elektrischer Maschinen mit Isogeometrischer Analyse
2017 Parallele Zeitbereichssimulation von Differential-algebraischen Gleichungen mit Parareal
2017 Design Centering im Kontext der Hochfrequenzsimulation (extern mit der CST GmbH)
2016 Paraexp for Electromagnetic Problems
2016 Numerical Calculation of Current Density Distributions in Coils
2016 Analyse von Modellunsicherheiten mit Multilevel Monte Carlo
2015 Reliability Analysis of EM-Components based on Dakota
2015 Field/Circuit Coupling with Onelab
2015 Berechnung der Geometriesensitivität von elliptischen Problemen durch Automatisches Differenzieren
2014 Optimierte primal/duale Gitterpaare für FIT auf unstrukturierten Gittern
2013 Isogeometric Simulation of Lorentz Detuning in Superconducting Linear Accelerators
2013 Analysis of the Index Problem and Environment Configuration in Modelica and FMI (extern bei der Prostep AG)
2012 Nonlinear Material Curve Modeling and Sensitivity Analysis for Magnetoquasistatic Problems
2012 Analyse der Erzeugung von monotonen Materialkurven mit Ausgleichssplines