Jobs, Studien-, Bachelor- oder Master-Arbeiten

Die folgende Liste schlägt Themen für studentische Arbeiten an der Arbeitsgruppe vor. Viele Themen können als HiWi-Job, Studien-, Bachelor- oder Master-Arbeit bearbeitet werden. Weitere Arbeiten in den genannten Themengebieten sind stets auf Anfrage möglich. Kontaktieren Sie uns gerne!

Der Leitfaden (wird in neuem Tab geöffnet) enthält Hinweise zum Schreiben von Abschluss- und Hausarbeiten, außerdem stehen Latex-Vorlagen für Arbeiten und Vorträge bereit.

  • Bachelorarbeit, Masterarbeit

    Superconducting magnets as e.g. used in particle colliders such as the LHC at CERN exhibit complex transient magneto-thermal phenomena whose analysis requires appropriate numerical methods such as the finite element (FE) method. When using the latter, thin insulation layers can lead to numerical problems in Contact: thermal simulations due to their high aspect ratios.

    To circumvent this problem, thin shell approximations collapsing the volumetric insulation layer into a surface can be used. However, without further considerations, these methods require the meshes on both sides of the shell to be conforming. In order to conveniently treat layer-to-layer insulation of superconducting magnets, a way to deal with non-conforming meshes is desirable.

    Mortaring methods are a well-known possibility to cope with non-conforming meshes. Thus, this announcement proposes to implement mortaring for thin shell approximations in the open-source finite element framework GetDP.

    Betreuer/innen: Erik Schnaubelt, M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Hiwi Stelle

    Material relations are a key factor when it comes to accurate simulations of complex machines such as the superconducting magnets of the LHC particle collider at CERN. To this end, a lot of effort is spent on finding appropriate fits of various different materials under various different operating conditions. The results are typically kept in libraries, in the case of CERN as functions written in C (see here). These functions are then to be used in different simulation tools which, however, often require a translation of the material function into a different programming language (typically, to python or Matlab).

    So far, this translation is done mostly manually. This implies that changes to the common basis C functions require changes in all translated versions as well. To avoid this cumbersome manual process, this announcement proposes an automatic wrapper generation of the base C function to other programming languages using, for example, the software development tool SWIG.

    Betreuer/innen: Erik Schnaubelt, M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Hiwi Stelle

    CERN recently started a project to build a comprehensive open-source quench simulation tool called FiQuS (Finite Element Quench Simulation). It is based on the finite element (FE) framework GetDP and FE mesher Gmsh. The idea is to build a flexible tool which allows users to build and simulate complex models from human-readable input files hiding the complexity of the underlying kernel.

    FiQuS is written mostly in python with small parts written in GetDP’s own scripting language. Following modern software engineering standards, focus is put on continuous integration and deployment, in particular comprehensive testing of all parts of the software. Furthermore, the use of high-performance computing is planned to be integrated while keeping the tool simple to use.

    We are looking for a motivated student to help our team shape FiQuS and make this new and demanding project succeed. The exact details of the work can be discussed depending on the wishes of the student and range from software engineering tasks to building finite element models. Possible duties may include

    • Setup of automated and comprehensive testing in the CI/CD pipeline

    • Maintenance of the gitlab project including CI/CD, wiki, documentation

    • Development of template finite element formulations or model geometries

    • Preparation of the tool for use of high-performance computing methods

    Betreuer/innen: Erik Schnaubelt, M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Masterarbeit

    Due to their high sensitivity, magnetoelectric (ME) sensors consisting of multiferroic composite materials have wide application areas, mainly focusing on the medical field, e.g. for measuring biomagnetic signals in the diagnostics of human brain or heart functions. These ME are based on composites with magnetostrictive and piezoelectric layers that are usually accompanied by a layer of substrate, made of e.g. silicon or steel. The modeling and simulation of such ME composite structures is particularly challenging as it involves partial differential equations that couple the electric, magnetic and mechanical fields.

    The master thesis aims at extending already existing mathematical models to include the piezoelectric effect and simulating the resulting PDEs with the open-source solver GEOPDEs, which uses Isogeometric Analysis (IGA), a generalization of the Finite Element Method (FEM) based on splines that enables exact geometry description.

    Betreuer/innen: Dr. rer. nat Mané Harutyunyan , Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Studienarbeit, Bachelorarbeit, Masterarbeit, Projektseminar

    Deviations in the manufacturing process of electronic components may lead to rejections due to malfunctioning. Uncertain design parameters (i.e. geometrical and material parameters) can be modeled as random variables. Then, the failure probability of a realization can be estimated. A standard approach for estimating failure probabilities is a Monte Carlo analysis. In a Monte Carlo analysis a large number of sample points is generated according to a given probability distribution. The percentage of sample points not fulfilling some predefined performance feature specifications denotes the failure probability. In order to obtain a reliable estimation, a large number of sample points is required. This leads to high computing costs, since for each sample point a PDE must be solved, e.g. with the finite element method (FEM). Current research deals with the reduction of computational effort. Importance sampling is an approach to reduce the number of FEM evaluations by generating sample points in critical regions with a higher probability.

    Betreuer/innen: Mona Fuhrländer, M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Studienarbeit, Bachelorarbeit, Masterarbeit, Projektseminar

    Electron guns represent the first stage of linear accelerators. As such, they have to fulfill a number of criteria: provide a focused beam of high enough energy, abide by space and weight constraints and not interfere with the vacuum conditions of the surrounding chamber. A lot of research has been done to design guns that meet all the above requirements, however these approaches often optimize individual parts separately, unneccesarily constrain the design space or make strong assumptions in order to obtain a more easily solvable problem.

    This thesis aims to create a holistic design approach for electron guns that is based on shape optimization using the isogeometric analysis (IGA) package GeoPDEs and the particle tracking code ASTRA. A further point of interest are more advanced optimization techniques (e.g. employing shape derivatives) and increasing the efficiency of the software.

    Betreuer/innen: Peter Förster, M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Bachelorarbeit, Masterarbeit

    Due to the growing importance of e-mobility, the efficient simulation and optimization of electric energy converters, in particular electric machines, is becoming increasingly important. In the manufacturing process of these electric machines imperfections and small deviations from the nominal design can occur. In the worst case, these imperfections can lead to a significant decrease in quality or even failure of the machine. To avoid this, the machine can be optimized robustly, i.e., considering the deviations in the machine design. Robust optimization aims to find a machine design which is robust in terms of deviations from the nominal design, i.e., to find an optimum in terms of a goal function J which does not deteriorate significantly for small changes in the design parameters p, compare Fig. 2. In this project an electric machine is simulated using isogeometric analysis and the shape of the machine shall be optimized robustly considering uncertainties, using uncertainty quantification methods like the Monte Carlo method.

    Betreuer/innen: Melina Merkel, M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

2022 Baum-Cobaum-Eichung für zweistufige vollständige Maxwell-Probleme
2022 Parallele Lösung von linearen Systemen, die in Gebietszerlegungsverfahren auftreten
2022 Flexiblere Zahlenformate für hochpräzise Simulationen
2022 Numerische Analyse SQP-artiger Verfahren
2022 Formoptimierung eines magnetokalorischen Kühlsystems mit isogeometrischen finiten Elementen
2022 Self Service Advanced Analytics for Modular Plants (extern bei Merck)
2022 A Python Circuit Simulator based on Xyce
2022 Self Service Advanced Analytics for Modular Plants
2022 An All-floating IETI Method from a Mortaring Perspective
2021 Mortaring for the Isogeometric Boundary Element Method
2021 Entwicklung und Validierung eines gemeinsamen multiphysikatischen Simulationsmodells einer C-Gestell-Presse zur Prozessanalyse und dessen Nutzen Für die virtuelle Inbetriebnahme (extern bei Siemens)
2021 Numerische Methoden zur Lösung der quasistatischen Darwin-Formulierung
2021 Minimierung von Fehlerwahrscheinlichkeiten für elektrische Maschinen
2021 Volumetrische Modellierung und Simulation von elektrischen Maschinen für additive Fertigung
2021 Numerische Modellierung und Simulation von magnetisch-mechanischer Kopplung mit isogeometrischer Analyse
2020 Surrogatbasierte Optimierung mit Unsicherheiten
2020 Numersche Simulation von magnetothermischen Phänomenen in hochtemperatur-supraleitenden Bändern und Spulen
2020 Volumetrische Modellierung und Simulation von elektrischen Maschinen für additive Fertigung
2020 ParaROCK – A parallel Runge-Kutta Orthogonal Chebyshev method
2020 Parallel-In-Zeit-Simulationvon elektromagnetischen Energiewandlern
2020 Implementierung von 3D isogeometrischem Mortaring
2020 Pareto Optimization for Failure Probabilities
2020 Automated Numerical Characterization of a Synchronous Reluctance Machine (extern bei Dassault Systems)
2020 Modeling and Optimization of DC-link Capacitors in Automotive High-voltage Systems (extern bei Porsche)
2019 Iterative Solvers for Complex Linear Systems in the Isogeometric Boundary Element Method
2019 Shape Optimizing a Permanent Magnet Synchronous Machine using Isogeometric Analysis
2019 Efficient Methods for Yield Optimization using CST Microwave Studio
2019 Online Simulation of Magnets for Augmented Reality Applications
2019 Modelling of Superconducting Accelerator Magnets with Finite Elements
2019 Bayesian Methods for Magnetic Field Reconstruction from Measurements
2018 Neue effiziente numerische Verfahren zur Simulation von elektrischen Maschinen (extern bei der Robert Bosch GmbH)
2018 Shape Optimization of an Electron Gun using Isogeometric Analysis
2018 Particle Tracking Using Isogeometric Analysis
2018 Optimization of a Permanent Magnet Synchronous Machine with an Uncertain Driving Cycle
2018 Numerical Simulation of an Optical Grating Coupler with Uncertainties using Adaptive Sparse-Grids based on Adjoint-Error Indicators
2017 Simulation Elektrischer Maschinen mit Isogeometrischer Analyse
2017 Parallele Zeitbereichssimulation von Differential-algebraischen Gleichungen mit Parareal
2017 Design Centering im Kontext der Hochfrequenzsimulation (extern mit der CST GmbH)
2016 Paraexp for Electromagnetic Problems
2016 Numerical Calculation of Current Density Distributions in Coils
2016 Analyse von Modellunsicherheiten mit Multilevel Monte Carlo
2015 Reliability Analysis of EM-Components based on Dakota
2015 Field/Circuit Coupling with Onelab
2015 Berechnung der Geometriesensitivität von elliptischen Problemen durch Automatisches Differenzieren
2014 Optimierte primal/duale Gitterpaare für FIT auf unstrukturierten Gittern
2013 Isogeometric Simulation of Lorentz Detuning in Superconducting Linear Accelerators
2013 Analysis of the Index Problem and Environment Configuration in Modelica and FMI (extern bei der Prostep AG)
2012 Nonlinear Material Curve Modeling and Sensitivity Analysis for Magnetoquasistatic Problems
2012 Analyse der Erzeugung von monotonen Materialkurven mit Ausgleichssplines