Abschlussarbeiten

Studien-, Bachelor- oder Master-Arbeiten

Die folgende Liste schlägt Themen für studentische Arbeiten an der Arbeitsgruppe vor. Die meisten Themen können als Studien-, Bachelor- oder Master-Arbeit bearbeitet werden. Weitere Arbeiten in den genannten Themengebieten sind stets auf Anfrage möglich. Kontaktieren Sie uns gerne!

Unter Leitfaden finden sich Vorlagen und Hinweise zum Schreiben von Abschluss- und Hausarbeiten.

Themenvorschläge

  • Bachelorarbeit, Masterarbeit

    Eigenmodes of accelerator cavities are cataloged based on their electromagnetic fields in order to analyze the performance of the device. The nomenclature is originally defined for cylindrical pillbox cavities where the eigenfrequencies and corresponding field distributions are known analytically. Due to the complex shape of real-world cavities, in practice the eigenmodes need to be determined using numerical simulations. The attempt to automatically classify eigenmodes by post-processing the numerical field solution is still cumbersome1. Therefore, the focus of this work is to investigate automatic mode recognition by deforming the cavity geometry to a pillbox and tracking the eigenmodes during the deformation.

    Betreuer/innen: Mona Fuhrländer , M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Bachelorarbeit, Masterarbeit

    Eigenmodes of accelerator cavities are cataloged based on their electromagnetic fields in order to analyze the performance of the device. The nomenclature is originally defined for cylindrical pillbox cavities where the eigenfrequencies and corresponding field distributions are known analytically. Due to the complex shape of real-world cavities, in practice the eigenmodes need to be determined using numerical simulations. The attempt to automatically classify eigenmodes by post-processing the numerical field solution is still cumbersome1. Therefore, the focus of this work is to investigate automatic mode recognition by deforming the cavity geometry to a pillbox and tracking the eigenmodes during the deformation.

    Betreuer/innen: Mona Fuhrländer , M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Bachelorarbeit

    Time domain simulations of electromagnetic energy converters using the standard sequential time integration approach are often computationally expensive due to the need of a very fine resolution along the time axis. Parallelization methods such as the Parareal algorithm have recently become a powerful acceleration tool because of their capability to distribute the workload among several processing units. This work aims at the exploitation of Parareal within magnetoquasistatic computations, e.g., for simulation of induction motorsin the time domain.

    Betreuer/innen: Iryna Kulchytska-Ruchka , M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Bachelorarbeit

    Eigenmodes of accelerator cavities are cataloged based on their electromagnetic fields in order to analyze the performance of the device. The nomenclature is originally defined for cylindrical pillbox cavities where the eigenfrequencies and corresponding field distributions are known analytically. Due to the complex shape of real-world cavities,in practice the eigenmodes need to be determined using numerical simulations. The attempt to automatically classify eigenmodes by post-processing the numerical field solution is still cumbersome [1]. Therefore, the focus of this work is to investigate automaticmode recognition by deforming the cavity geometry to a pillbox and tracking the eigenmodes during the deformation.

    Betreuer/innen: Niklas Georg , M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Bachelorarbeit

    Magnetostrictive Electronic Article Surveillance Tags (EAS) are a common tool to prevent shoplifting and make use of the magnetoelastic coupling to convert electromagnetic energy into mechanical energy and vice versa. They usually consist of thin magnetostrictive metal strips (see Fig. 1) that vibrate once exposed to the magnetic field at the exit of the shop. This, in turn, changes the magnetization of the strip, inducing an AC voltage and activating an alarm in the detector.

    Betreuer/innen: Dr. rer. nat Mané Harutyunyan , Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Bachelorarbeit

    Deviations in the manufacturing process of electronic components may lead to rejections due to malfunctioning. Uncertain design variables can be modeled as random variables. Then, the probability that a product fulfills its performance feature specifications is called the yield. The aim of our research is to estimate the yield and then maximizing the yield, which corresponds to minimizing the failure probability.

    Betreuer/innen: Mona Fuhrländer , M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Studienarbeit, Bachelorarbeit, Masterarbeit

    For the simulation of electromagnetic fields in many situations, quasistatic approximations to Maxwell’s equations are sufficient. The most well-known approximations are magneto-quasistatics (MQS) and electro-quasistatics (EQS). However, there is another formulation due to Darwin [1] which essentially combines MQS and EQS and allows to predict the behavior of problems as shown in Fig. 1. The Darwin formulation is less explored from the view point of computational engineering and thus many questions can be addressed within a thesis project.

    Betreuer/innen: Prof. Dr. rer. nat. Sebastian Schöps , Idoia Cortes Garcia , M.Sc.

    Ausschreibung als PDF

  • Studienarbeit, Bachelorarbeit, Masterarbeit

    The Finite element method (FEM) in the frequency domain is one of the most powerful methods for the solution of high frequency electromagnetic field problems for resonators, filters, attenuators,etc. In many practical applications, however, the frequency response of the system over a broad frequency band is required.Fast Frequency Sweeping (FFS) is a class of methods used for the estimation of broadband S-parameters based on evaluation of a minimum amount of frequency points. Modern FFS methods include Reduced Basis Methods, Thiele based interpolation, Asymptotic Waveform Evaluation and Vector Fitting. Each of the methods have advantages and disadvantages depending on the specific characteristics of the frequency response of the system.

    Betreuer/innen: PD Dr. rer. nat. Erion Gjonaj , Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Studienarbeit, Bachelorarbeit, Masterarbeit

    Isogeometric analysis (IGA) is a finite element method (FEM) using splines for geometry description and basis functions such that the geometry can be exactly represented. Recently, an isogeometric mortar coupling [1] for electromagnetic problems was proposed. It is particularly well suited for the eigenfrequency prediction of superconducting accelerator cavities. Each cell, see Fig. 1, can be represented by a different subdomain but may still share the same discretization. The approach leads to a (stable and spectral correct) saddle-point problem. However, its numerical solution is cumbersome and iterative substructuring methods become attractive. The resulting system is available from a Matlab/Octave code. In this project the finite element tearing and interconnect method (FETI) shall be investigated and standard, possibly low-rank,preconditioners implemented and

    Betreuer/in: Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Multiscale and multirate problems occur naturally in many applications from electrical engineering, e.g. buck converters. An efficient simulation can be achieved using the concept of Multirate Partial Differential Equations.

    Betreuer/innen: Andreas Pels , M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Bachelorarbeit, Masterarbeit

    In electronics, the most serious failure mechanism is due to electromigrationin the interconnects. This effect shall be modelled and simulated within an existing software environment.

    Betreuer/innen: Dr.-Ing. Thorben Casper , Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

  • Studienarbeit, Masterarbeit

    The focus of this work is the adaptive construction of the polynomial surrogate modelin order to mitigate the curse-of-dimensionality. The efficiency of this approach shall be further improved by employing adjoint-based error measures.

    Betreuer/innen: Niklas Georg , M.Sc., Prof. Dr. rer. nat. Sebastian Schöps

    Ausschreibung als PDF

2020 Implementation of 3D Isogeometric Mortaring
2020 Pareto Optimization for Failure Probabilities
2020 Automated Numerical Characterization of a Synchronous Reluctance Machine (extern bei Dassault Systems)
2020 Modeling and Optimization of DC-link Capacitors in Automotive High-voltage Systems (extern bei Porsche)
2019 Iterative Solvers for Complex Linear Systems in the Isogeometric Boundary Element Method
2019 Shape Optimizing a Permanent Magnet Synchronous Machine using Isogeometric Analysis
2019 Efficient Methods for Yield Optimization using CST Microwave Studio
2019 Online Simulation of Magnets for Augmented Reality Applications
2019 Modelling of Superconducting Accelerator Magnets with Finite Elements
2019 Bayesian Methods for Magnetic Field Reconstruction from Measurements
2018 Neue effiziente numerische Verfahren zur Simulation von elektrischen Maschinen (extern bei der Robert Bosch GmbH)
2018 Shape Optimization of an Electron Gun using Isogeometric Analysis
2018 Particle Tracking Using Isogeometric Analysis
2018 Optimization of a Permanent Magnet Synchronous Machine with an Uncertain Driving Cycle
2018 Numerical Simulation of an Optical Grating Coupler with Uncertainties using Adaptive Sparse-Grids based on Adjoint-Error Indicators
2017 Simulation Elektrischer Maschinen mit Isogeometrischer Analyse
2017 Parallele Zeitbereichssimulation von Differential-algebraischen Gleichungen mit Parareal
2017 Design Centering im Kontext der Hochfrequenzsimulation (extern mit der CST GmbH)
2016 Paraexp for Electromagnetic Problems
2016 Numerical Calculation of Current Density Distributions in Coils
2016 Analyse von Modellunsicherheiten mit Multilevel Monte Carlo
2015 Reliability Analysis of EM-Components based on Dakota
2015 Field/Circuit Coupling with Onelab
2015 Berechnung der Geometriesensitivität von elliptischen Problemen durch Automatisches Differenzieren
2014 Optimierte primal/duale Gitterpaare für FIT auf unstrukturierten Gittern
2013 Isogeometric Simulation of Lorentz Detuning in Superconducting Linear Accelerators
2013 Analysis of the Index Problem and Environment Configuration in Modelica and FMI (extern bei der Prostep AG)
2012 Nonlinear Material Curve Modeling and Sensitivity Analysis for Magnetoquasistatic Problems
2012 Analyse der Erzeugung von monotonen Materialkurven mit Ausgleichssplines