Electromagnetic fields and circuit simulation

Plugin required: in order to see this object, your browser has to support files of type image/svg+xml. Download

Often, devices can be simulated sufficiently accurate as electrical circuits, i.e., by network models. However, the increasing frequencies and the decreasing size forces designers to account for wave propagation effects, eddy-currents, ferromagnetic saturation and hysteresis. Some effects can be represented by order-reduced equivalent models that are embedded in an electrical circuit.

However, the representation of field-dependent nonlinearities and hysteresis effects is not straightforward. Complex 3D field models are required, e.g. discretized with classical finite elements (FEM) or isogeometric analysis (IGA). Therefore hybrid field/circuit models are a relevant research topic on its own.


Cortes Garcia, Idoia ; De Gersem, Herbert ; Schöps, Sebastian (2019):
A Structural Analysis of Field/Circuit Coupled Problems Based on a Generalised Circuit Element.
In: Numerical Algorithms, Springer, ISSN 1017-1398,
DOI: 10.1007/s11075-019-00686-x,
[Online-Edition: https://doi.org/10.1007/s11075-019-00686-x],

Cortes Garcia, Idoia ; Schöps, Sebastian ; De Gersem, Herbert ; Baumanns, Sascha
Ilchmann, Achim ; Reis, Timo (Hrsg.) (2018):
Systems of Differential Algebraic Equations in Computational Electromagnetics.
In: Benchmarks in Differential-Algebraic Equations, Heidelberg, Springer, DOI: 10.1007/11221_2018_8,
[Online-Edition: https://doi.org/10.1007/11221_2018_8],
[Book section]

Cortes Garcia, Idoia ; Schöps, Sebastian ; Bortot, Lorenzo ; Maciejewski, Michał ; Prioli, Marco ; Fernandez Navarro, Alejandro Manuel ; Auchmann, Bernhard ; Verweij, Arjan Peter (2017):
Optimized Field/Circuit Coupling for the Simulation of Quenches in Superconducting Magnets.
In: IEEE Journal on Multiscale and Multiphysics Computational Techniques, S. 97-104, 2, (1), ISSN 2379-8793,
DOI: 10.1109/JMMCT.2017.2710128,
[Online-Edition: https://doi.org/10.1109/JMMCT.2017.2710128],

Römer, Ulrich ; Schöps, Sebastian (2015):
Adjoint Error Estimation for a Pseudo-Spectral Approach to Stochastic Field-Circuit Coupled Problems.
In: Proceedings in Applied Mathematics and Mechanics, Wiley, S. 711-714, [Online-Edition: http://dx.doi.org/10.1002/pamm.201510345],
[Book section]

Schöps, Sebastian ; De Gersem, Herbert ; Weiland, Thomas (2013):
Winding Functions in Transient Magnetoquasistatic Field-Circuit Coupled Simulations.
In: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, S. 2063-2083, 32, (6), [Online-Edition: http://dx.doi.org/10.1108/COMPEL-01-2013-0004],

Schöps, Sebastian ; Bartel, Andreas ; De Gersem, Herbert
Michielsen, Bastiaan ; Poirier, Jean-René (Hrsg.) (2012):
Multirate Time Integration of Field/Circuit Coupled Problems by Schur Complements.
In: Scientific Computing in Electrical Engineering SCEE 2010, Berlin, Springer, S. 243-251, [Online-Edition: http://dx.doi.org/10.1007/978-3-642-22453-9_26],
[Book section]

Schöps, Sebastian ; De Gersem, Herbert ; Bartel, Andreas (2012):
Higher-Order Cosimulation of Field/Circuit Coupled Problems.
In: IEEE Transactions on Magnetics, S. 535-538, 48, (2), [Online-Edition: http://dx.doi.org/10.1109/TMAG.2011.2174039],

Bartel, Andreas ; Baumanns, Sascha ; Schöps, Sebastian (2011):
Structural Analysis of Electrical Circuits Including Magnetoquasistatic Devices.
In: Applied Numerical Mathemathics, Elsevier Verlag, S. 1257-1270, [Online-Edition: http://dx.doi.org/10.1016/j.apnum.2011.08.004],

Schöps, Sebastian ; De Gersem, Herbert ; Bartel, Andreas (2010):
A Cosimulation Framework for Multirate Time Integration of Field/Circuit Coupled Problems.
In: IEEE Transactions on Magnetics, S. 3233-3236, 46, (8), [Online-Edition: http://dx.doi.org/10.1109/TMAG.2010.2045156],

go to TU-biblio search on ULB website